
J
H
E
P
0
2
(
2
0
0
8
)
0
3
7

Published by Institute of Physics Publishing for SISSA

Received: December 7, 2007

Accepted: February 1, 2008

Published: February 12, 2008

Evolution of cosmic superstring networks: a numerical

simulation

Jon Urrestillaab and Alexander Vilenkinb

aDepartment of Physics and Astronomy, University of Sussex,

Brighton, BN1 9QH, U.K.
bInstitute of Cosmology, Department of Physics and Astronomy,

Tufts University, Medford, MA 02155, U.S.A.

E-mail: J.Urrestilla@sussex.ac.uk, vilenkin@cosmos.phy.tufts.edu

Abstract: We study the formation and evolution of an interconnected string network

in large-scale field-theory numerical simulations, both in flat spacetime and in expanding

universe. The network consists of gauge U(1) strings of two different kinds and their bound

states, arising due to an attractive interaction potential. We find that the network shows

no tendency to “freeze” and appears to approach a scaling regime, with all characteristic

lengths growing linearly with time. Bound strings constitute only a small fraction of the

total string length in the network.

Keywords: Topological Strings, Long strings, String theory and cosmic strings.

mailto:J.Urrestilla@sussex.ac.uk
mailto:vilenkin@cosmos.phy.tufts.edu
http://jhep.sissa.it/stdsearch


J
H
E
P
0
2
(
2
0
0
8
)
0
3
7

Contents

1. Introduction 1

2. Simulation details 3

2.1 The model 3

2.2 Numerical setup 5

3. Results 7

3.1 The network correlation scale ξ 7

3.2 Bound strings 11

3.3 Non-scaling of A and B segments 13

3.4 Towards a true scaling regime 14

3.5 Loops and small nets 15

3.6 Effect of higher binding energy 17

4. Conclusions and discussion 17

1. Introduction

It has been recently realized [1] that fundamental strings and other string-like objects,

such as D-strings, can have astronomical dimensions and play the role of cosmic strings.1

Observing these objects in the sky would provide the most direct test of superstring theory.

Both types of string are naturally formed in the course of brane-antibrane annihilation at

the end of brane inflation [2 – 6]. Fundamental (F ) andD-strings produced in the aftermath

of this annihilation can form (p, q) bound states combining p F -strings and q D-strings.

As a result the strings are expected to form an interconnected FD-network [5, 6], with

different types of string joined in 3-way Y -type junctions.

Similar string networks can also be formed in field theory; a simple example has been

recently given by Saffin [7]. His model includes two Abelian Higgs models, with an addi-

tional coupling between the Higgses. The model has a broken U(1)A × U(1)B symmetry,

resulting in two types of string, and the coupling is chosen so that A and B-type strings

are attracted to each other and can form (p, q) bound states. An even simpler example is

the usual Abelian Higgs model. With a suitable choice of the Higgs and gauge couplings,

corresponding to the type-I regime, this model allows stable strings with arbitrary wind-

ings, which can be joined in 3-way junctions [8]. Strings with extreme type I properties

can also be formed in models with SUSY flat directions [9].

1Higher-dimensional D-branes with all but one dimension compactified will also appear as stringlike

objects from a macroscopic point of view.
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String networks with 3-way vertices can also arise in models with symmetry breaking

of the kind G→ Z3 [10], as well as in non-Abelian field theories with several types of strings

corresponding to non-commuting symmetry generators [11, 12]. In the latter case, when

two non-commuting strings cross, a third string starts stretching between them, resulting

in two Y -junctions.

The evolution of cosmic string networks has been a subject of much recent discussion

and debate.2 Early work on Z3-strings [15], using a simple analytic model, suggested

that at late times the characteristic scale of the network, ξ = (µ/ρs)
1/2, exhibits scaling

behaviour,

ξ(t) = γt, (1.1)

and

ρs/ρ ∼ Gµ/γ2. (1.2)

Here, ρs and ρ are the average energy densities of the network and of the universe, respec-

tively, µ is the string tension, and γ is a constant . A similar model was later used for ZN

networks having N strings joined at each vertex [16].

The magnitude of γ in eq. (1.1) depends on the rate of energy loss by the network. In Z3

models, the vertices can carry an unconfined magnetic charge. The energy of the network is

then efficiently dissipated by gauge field radiation from these magnetic monopoles. Another

energy loss mechanism is the formation of closed loops and of small nets disconnected from

the main network. In the absence of magnetic charges, and if loop and net formation turn

out to be inefficient, the remaining energy loss channel is the gravitational radiation. In

this case, the analysis of [15] gives γ ∼ Gµ, and eq. (1.2) gives ρs/ρ ∼ 1/Gµ ≫ 1, indicating

that the string network becomes so dense that it dominates the universe.

More sophisticated analytic models have recently been developed, aimed directly to

describe cosmic superstrings. These models allow for several types of string with different

tensions and use the velocity-dependent one-scale model of string evolution [17, 18] (see

also [19]). The models make somewhat different assumptions about the physics of F - and

D-string interaction. Tye, Wasserman and Wyman [17] assume that when F and D strings

meet and “zip” to form a bound FD-string, the excess energy is released in the form of high-

energy particles. If this picture is correct, it provides an important additional mechanism

of energy loss by the network. They also assume that the entire network is characterized

by a single length scale ξ(t). Avgoustidis and Shellard [18] assume, on the other hand, that

the energy released in the zipping process goes to increase the kinetic energy of strings,

and thus remains in the network, and allow different length scales for different string types.

Assuming that the rate of energy loss to loops from networks is about the same as that

from “ordinary” strings, both models predict scaling evolution, with γ ∼ 1, with energy

about equally distributed between (1, 0), (0, 1), and (1,±1) strings, and with negligible

amount of energy is higher-(p,q) strings.

2One of the key questions is whether or not the network gets entangled and “freezes”, in which case it

would eventually dominate the energy density of the universe [13, 14]. However, most recent work points

to scaling evolution.
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Network evolution has also been studied in field-theory numerical simulations.3 Spergel

and Pen [20] and later Copeland and Saffin [16] used a non-linear sigma-model to simulate

non-commuting string networks. Hindmarsh and Saffin [21] performed a full field theory

simulation of global Z3 strings. In all this work, the network was found to scale with

γ ∼ 0.1 − 1, indicating efficient damping. The models used in [20, 16, 21] have some

important differences from superstring networks. First, all types of string in these models

have the same tension, while in an FD-network the tensions of all (p, q) strings are generally

different. Second, the global symmetry breaking models used in [20, 16, 21] allowed for an

additional energy loss mechanism — the radiation of massless Goldstone bosons — which

is known to be rather efficient. On the other hand, superstring networks are expected to

have only gravitational-strength couplings to massless (or light) bosons.4 Hence, there is a

danger of string domination, unless the network can efficiently lose energy by loop or small

net production.

A field theory simulation of an interconnected string network has been recently devel-

oped by Rajantie, Sakellariadou and Stoica [23]. They used a model of interacting scalar

and gauge fields similar to the Saffin’s model [7], which allows two types of string and a

spectrum of bound sates. The dynamic range of their simulations was not sufficient to reach

any conclusions about the statistical properties of the network and its scaling behaviour

(or lack thereof). The main focus of Rajantie et al. paper is on the effect of the long-range

interaction induced by the Goldstone field in models where one of the two U(1) symmetries

of the model is global. They find that this interaction disrupts the string bound states in

the network. This result is probably of little relevance for superstring FD-networks, since,

as we already noted, superstring interactions are expected to have gravitational strength

and thus have little effect on network dynamics.

In this paper, we have developed a new network simulation, which we believe to be

closer to a “realistic” superstring network. We used a field theory model with two types of

gauge strings and adopted Saffin’s [7] interaction potential to ensure that the strings form

bound states. The details of the model and of the simulation are given in the next section.

The results are presented in section 3. Our conclusions are summarized and discussed in

section 4.

2. Simulation details

2.1 The model

Saffin’s model of interacting strings5 is defined by the Lagrangian [7]

L = |Dµφ|
2 + |Dµψ|

2 −
1

4
F 2

µν −
1

4
F2

µν − V (|φ|, |ψ|). (2.1)

3Earlier simulations, using a simple model of straight strings joined at vertices, were performed in [15]

for a Z3 network and in [12] for non-Abelian strings.
4The possibility of cosmic superstrings having stronger than gravitational couplings to massless Ramond-

Ramond fields has been recently discussed by Firouzjahi [22].
5Similar models have been studied in relation to composite defects [24 – 27].
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κ = 0.90 κ = 0.95

(m,n) µ ∆µ µ ∆µ

(1,0) 0.793 - 0.728 -

(1,1) 1.278 0.308 1.133 0.323

(2,1) 1.798 0.581 1.560 0.624

Table 1: String tensions (µ) and bounding energies (∆µ) for (m,n) type strings, calculated for

κ = 0.90 [7] and κ = 0.95.

Here, φ and ψ are complex scalar fields, charged with respect to Aµ and Bµ gauge fields,

respectively,

Dµ = ∂µ − ieAµ,

Dµ = ∂µ − igBµ, (2.2)

Fµν = ∂µAν − ∂νAµ,

Fµν = ∂µBν − ∂νBµ, (2.3)

V (|φ|, |ψ|) =
λA

4
(|φ|2 − η2

A)2 +
λB

4
(|ψ|2 − η2

B)2 − κ(|φ|2 − η2
A)(|ψ|2 − η2

B). (2.4)

Without the last term in the potential, the model describes independent A- and B-strings.

Bound states are formed if the parameter κ is chosen in the range [7]

0 < κ <
1

2

√

λAλB . (2.5)

In this paper we shall not attempt to explore the full parameter space of the model

and consider only the special case where the strings are in the Bogomol’nyi limit,

λA = 2e2, λB = 2g2. (2.6)

We shall also set e = g and ηA = ηB . With standard rescalings, the parameters of the

model can then be reduced to

ηA = ηB = 1, (2.7)

e = g =
1

2
λA =

1

2
λB = 1, (2.8)

and the range of κ in eq. (2.5) becomes

0 < κ < 1. (2.9)

In most of our simulations we used the value κ = 0.9. Table 1 gives the corresponding string

tensions, as well as the binding energies (per unit length of string), which are relatively

large. We have also included in table 1 the values for a larger κ = 0.95.
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2.2 Numerical setup

Our aim was to perform real-time lattice simulations of model (2.1), for as long a time

as our facilities allowed us. In order to do this, we obtained the equations of motions

from (2.1),

φ̈+ 2
ȧ

a
φ̇−DjDjφ = −a2φ

[

λA

2

(

|φ|2 − η2
A

)

+ κ
(

|ψ|2 − η2
B

)

]

ψ̈ + 2
ȧ

a
ψ̇ −DjDjψ = −a2ψ

[

λB

2

(

|ψ|2 − η2
B

)

+ κ
(

|φ|2 − η2
A

)

]

Ḟ0j − ∂iFij = −2a2e Im[φ∗Djφ]

Ḟ0j − ∂iFij = −2a2g Im[ψ∗Djψ] (2.10)

where we have made a gauge choice A0 = B0 = 0 and assumed a flat FRW spacetime

written in conformal time,

ds2 = a2(τ)(dτ2 − dx2). (2.11)

Overdots in eqs. (2.10) stand for derivatives with respect to τ .

There is a well-known problem in such simulations: the string core has a fixed physical

width, whereas the distance between lattice-points grows with the expansion (a ∝ τ in

radiation era, and a ∝ τ2 in matter era). As a result the string width quickly drops

below the resolution threshold of the simulation. Here, we have adopted the approach

used in [28 – 31], in which the equations of motion are artificially modified to have the

string width growing with the expansion, so as to be able to simulate them throughout the

evolution.

Following [31], the equations of motion (2.10) can be written as:

φ̈+ 2
ȧ

a
φ̇−DjDjφ = −a2sφ

[

λA

2

(

|φ|2 − η2
A

)

+ κ
(

|ψ|2 − η2
B

)

]

Ḟ0j − 2(1 − s)
ȧ

a
∂iFij = −2a2se Im[φ∗Djφ] (2.12)

and likewise for ψ and Bµ. Here, s is a parameter that controls the growth of the string

width, with s = 1 being the true value. As earlier work has shown [31, 30], there is little

difference in string dynamics for different values of s. For the remainder of this work, we

shall set s = 0 (that is, the string has constant comoving width).

We discretized the modified equations of motion (2.12) on a lattice using the standard

lattice link variable approach [32] and performed the simulations on the UK National

Cosmology Supercomputer [33]. The simulation box consisted of 5123 lattice points, with

periodic boundary conditions. We chose ∆x = 1.0 and ∆τ = 0.2 trying to maximize the

dynamical range of the simulation.

Scaling evolution regime is expected to be an attractor, and indeed earlier work has

shown [31, 34 – 36] that this regime is approached from a wide range of initial configurations.

Nonetheless, constructing initial conditions for this kind of simulation is a nontrivial task.

The challenge is to find some initial configuration that leads to scaling as fast as possible,

in order to maximize the dynamical range.
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For the results presented here, we used the following procedure: we set all gauge fields

and gauge field momenta to zero, also set the scalar field momenta to zero. The magnitudes

of the scalar fields is set to ηA and ηB respectively (in the present work ηA = ηB = 1), and

their phases are chosen randomly. This configuration was then smoothed out by averaging

over nearest neighbours, and this procedure repeated 20 times, in order to get rid of some

excess initial gradient energy. Note that this initial configuration satisfies the (lattice)

Gauss law, and due to the lattice-link variable procedure, the Gauss law is guaranteed to

be satisfied throughout the simulation.

The initial configuration described above corresponds to a highly excited state, so in

order to remove the extra energy from the system, a fake constant damping was applied,

γ = ȧ
a = 0.2, until time τ = 32. From then on, we performed simulations for flat spacetime

(γ = 0), radiation (γ = 1/τ) and matter (γ = 2/τ) eras. Only times τ > 64 were used for

this analysis.

In order to automatically detect the strings in the simulation and compute their length,

we calculated the net winding of the phases around plaquettes. One can then trace the

string following the winding and estimate the lengths. The length L of a string that crosses

n plaquettes is estimated as L = n · ∆x.

An AB string can be traced by the sites where both A and B phases wind. Unfortu-

nately, there are two drawbacks of this procedure: on the one hand, there are accidental

crossings of A and B strings, i.e., lattice sites where an A string and a B string simply

cross and follow their way, without any attempt to form a bound state. On the other hand,

there are places where inside a clear segment of AB string, A and B phases do not wind in

exactly the same plaquettes, but there is a slight displacement (we will show an example

in the following section). In order to circumvent these problems, we have excluded acci-

dental crossing by setting a minimum size of AB string (lAB
min), and also excluded gaps in

AB segments (due to an occasional “displacement”) shorter than a given distance (dAB
max).

This means that in the process of detecting AB segments, all segments of size l < lAB
min will

not be considered as legitimate segments. Also, if the separation between two segments

is d < dAB
max, those two segments are considered as one. The total length of AB string is

not considerably affected by this process; the main difference corresponds to a more real-

istic count of the number N of Y -junctions formed, that is, it helps in not overcounting

AB-segments and Y -junctions. There is no obvious way of determining the values of lAB
min

and dAB
max, and we have chosen them to be lAB

min = 3 and dAB
max = 5 by trial and error, and

inspection of the results. With this choice, the corrected value of N is roughly a factor of

4 smaller than one would get from the raw data.

As we already mentioned, our choice of parameters was largely motivated by the effort

to increase the dynamic range of the simulation. For example, we allocated only a few

lattice points per string thickness. As a result, our discretized representation of the field

theory string solutions is not particularly accurate. For a rapidly moving string, this may

result in spurious damping, with the kinetic energy of the string being dissipated into

particles [37]. Moore et al. [30] performed numerical tests to determine the optimal choice

of the lattice spacing ∆x and concluded that ∆x = 0.5 is close to the maximal value that

still accurately represents the string dynamics. For larger values of ∆x, they observed a

– 6 –
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significant increase in spurious particle emission from oscillating strings.

In the present paper, our focus is not so much on the dynamics of oscillating loops,

as it is on the overall characteristics of the large network. In fact, in order to observe

oscillating loops in field theory simulations ∆x should be rather small (even smaller than

0.5), leaving us with a tiny dynamical range where large network properties would be

impossible to study. We therefore pushed the parameter values a bit further and used

∆x = 1.0, with the hope that these properties will not be strongly affected. We performed

several tests by simulating the system with different ∆x (0.5 < ∆x < 1.0), smoothness of

the initial configuration (smoothing between 0 and 30 times), the value of the initial fake

damping (between 0 and 0.5) and the length of time in which the fake damping was active

(0 < t < 50). The qualitative results for all characteristic lengths of the network were the

same in all cases, with the actual values agreeing within 10− 20%. (The only exception is

the length of A and B segments, as discussed in sections 3.3 and 3.4.)

3. Results

3.1 The network correlation scale ξ

Our simulations were performed in flat spacetime and in the radiation and matter eras.

In all cases an interconnected network was formed with A-, B- and (1, 1) AB-strings. No

higher-(p, q) strings were observed. A representative snapshot of the network is shown

in figure 1. Throughout the evolution, the network is dominated by one large (“infinite”)

interconnected net, comprising more than 90% of the total string length, as seen in figure 2.

As mentioned in the previous section, within a single AB bound state, A and B strings

can be displaced by a single lattice point, making the code decide that it is in fact two

separate segments. Figure 3 shows a fragment of the simulation box, with a somewhat long

AB string depicted. Those accidental displacements should not be taken into account, and

with the help of the parameter dAB
max (introduced earlier), the displacements are reassessed,

and the segment is counted as one.

The overall length scale of the network can be defined as usual,

ξ = (V/L)1/2, (3.1)

where V is the volume of the simulation box, L is the total length of string,

L = LA + LB + LAB , (3.2)

and LA, LB and LAB are the lengths in A, B and AB strings, respectively. ξ gives the

typical distance between strings in the network.

Throughout this paper we shall use comoving length scales. The corresponding physical

lengths, which will be denoted by superscript (ph), can be obtained by multiplying with

the scale factor a(τ), e.g.,

ξ(ph)(τ) = a(τ)ξ(τ). (3.3)

For our models, the scale factor has the form

a(τ) = (τ/τ0)
n, (3.4)

– 7 –
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Figure 1: Picture of a typical simulation of a (p,q) network. The green and blue colours correspond

to A and B strings respectively, whereas the red colour shows the AB segments. It can be clearly

seen how Y junctions are formed all over the simulation.

with τ0 = const and n = 0, 1, 2 for flat spacetime, radiation and matter eras, respectively.

The physical time t and the horizon distance ℓH are given by

t =

∫ τ

0
a(τ ′)dτ ′ =

τn+1

(n + 1)τn
0

, (3.5)

ℓH = a(τ)τ = (n+ 1)t. (3.6)

The simulation results for ξ(τ) are shown in figure 4, where each graph represents an

– 8 –
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Figure 2: Picture of a typical simulation of a (p,q) network. This picture represents the same

configuration, but we show how most of the string length (typically more than 90%) forms an

interconnected network (A and B strings in the main network shown in green and AB segments in

red) and there are only a few loops that do not belong to the main network (blue).

average over 10 simulations. Remarkably, the graphs for the flat, radiation and matter

regimes are almost identical. They show a nearly linear dependence,

ξ(τ) = ατ + ξ(0), (3.7)

with α ≈ 0.15 (see table 2). Toward the end of the simulation, the two terms in eq. (3.7)

are comparable to one another. If the linear dependence extends to much larger values of

– 9 –
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Figure 3: Fragment of the simulation box showed in figure 1. Green and blue correspond to A

and B string, whereas the red colour corresponds to an AB segment. A long AB segment can be

seen in the picture, but at some points the A and B string miss each other by just a lattice point.

With the help of the parameter dAB
max

those accidental displacements are accounted for, and long

segments such as the one in the figure are counted as one.

100 150 200 250
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30
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45

50

55

time

ξ

 

 

Flat
Rad
Mat

Figure 4: The correlation length ξ, as defined in eq. 3.1, averaged over 10 simulations for flat

(dashed black), radiation (continuous red) and matter (dotted blue) regimes. Note that all three

cases exhibit an approximately linear behaviour, nearly independent of the regime.

τ , the constant term eventually becomes negligible,

ξ ≈ ατ, (3.8)

and the corresponding physical length grows proportionally to the horizon,

ξ(ph)(t) ≈ (n+ 1)αt = αℓH(t). (3.9)
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Flat Radiation Matter

α (ξ) 0.14 0.15 0.15

αA (ξA) 0.21 0.22 0.21

αAB (lAB) 0.03 0.07 0.08

αN (ξN ) 0.21 0.28 0.30

Table 2: The values of the linear growth coefficients of different lengths, as defined in the body of

the paper, obtained by fitting the simulation data. Note that with our parameter values αA = αB.

 0.001

 0.01

 0.1

 80  100 120 140 160 180 200 220 240 260

f A
B

time

Flat
Rad
Mat

Figure 5: Fraction of total string length in bound strings, for flat, radiation and matter regimes.

The percentage is fairly low; between 0.5-1% for flat, and 1-2% for radiation and matter cases.

3.2 Bound strings

An important characteristic of the network is the fraction of total string length in bound

(AB) strings,

fAB =
LAB

LA + LB + LAB
. (3.10)

The simulation results for fAB are shown in figure 5. We see that fAB remains nearly

constant, at the value 0.01 ≤ fAB ≤ 0.02 in radiation and matter eras, and somewhat

lower for flat spacetime. Hence, bound strings constitute less than 2% of the network.

This is in conflict with analytic models [17, 18] predicting that the energy of the network

should be more or less equally divided between A, B and AB-strings. The main source

of the discrepancy is the assumption made in [17, 18] that crossings of A and B strings

typically lead to the formation of relatively stable bound AB segments of length ∼ ξ(t).

Visual inspection of the simulation movies suggests, on the contrary, that formation of

bound segments by intersecting A and B strings occurs rather infrequently, probably when

the relative velocity of the colliding strings is sufficiently small [38, 39]. Even when they

are formed, the AB-segments easily “unzip” as the free A and B ends pull in different

directions and do not usually last for more than a Hubble time.

Even though the fraction of bound string is small, the interaction of A and B-strings

has a significant effect on the network evolution. To quantify this effect, we ran some
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With B string

Figure 6: Comparison of ξA (only in radiation era, for clarity) between simulations points and

without B-strings.

simulations with the same initial conditions for A-string fields as before, but with B-string

fields starting in their ground state, so that no B strings are formed. A-strings then evolve

as ordinary U(1) strings, and their characteristic length

ξA = (V/LA)1/2 (3.11)

exhibits a linear dependence on τ with αA ≈ 0.29, as seen in figure 6 (This value is in

agreement with earlier U(1) simulations by Vincent et al. [40] and Moore et al. [30]). The

same quantity calculated with B-strings present gives αA ≈ 0.22, so the growth of ξA is

significantly slower than it would be if the two kinds of string evolved independently.

The average (comoving) length of AB-segments is

lAB = LAB/N, (3.12)

where N is the number of AB-segments (2N is the number of Y -junctions where the three

types of string meet). Figure 7 shows that the evolution of lAB is approximately linear,

lAB ≈ αABτ + l
(0)
AB. (3.13)

The coefficient αAB (see table 2) is nearly the same in radiation and matter eras (within

10%), α
(rad,mat)
AB ≈ 0.07, and is significantly smaller in flat spacetime, α

(flat)
AB ≈ 0.025. The

shorter bound segments in flat spacetime are probably due to larger string velocities.

The typical distance between Y -junctions is given by

ξN = (V/2N)1/3. (3.14)

Once again, we find approximately linear evolution (see figure 8),

ξN ≈ αN τ + ξ
(0)
N , (3.15)

with αN ≈ 0.3.
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Figure 7: The average length of bound segments lAB, as defined in eq. 3.12, for flat, radiation

and matter regimes. The evolution is approximately linear, with slope given in table 2.
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Figure 8: The average distance between Y -junctions, ξN as defined in eq. 3.14, for flat, radiation

and matter regimes. The evolution is approximately linear, with slope given in table 2.

3.3 Non-scaling of A and B segments

All results presented so far are consistent with scaling evolution, with all characteristic

length scales of the network growing proportionally to the horizon. However, the average

comoving lengths of A and B segments,

lA = LA/N, lB = LB/N, (3.16)

do not exhibit scaling behaviour. In fact, figure 9 shows that, rather surprisingly, these

lengths approach nearly constant values,

lA ≈ lB ≈ const. (3.17)

– 13 –



J
H
E
P
0
2
(
2
0
0
8
)
0
3
7

100 150 200 250
400

500

600

700

800

900

1000

1100

time

l A

 

 

Flat
Rad
Mat

Figure 9: The average length of A-segments lA is shown for flat, radiation and matter regimes.

In all three cases, lA is nearly constant at late times. The behaviour of lB is essentially the same.

The corresponding physical lengths grow proportionally to the scale factor.

Throughout the simulation, the segment length lA remains much greater than the

correlation length ξA. The correlation length grows with time, but is still about an order

of magnitude smaller than lA at the end of the simulation (and similarly for lB and ξB).

This suggests that A (and B) segments have the shape of random walks of step ∼ ξA and

end-to-end distance ∼ ξN . The length of the segments is then

lA ∼ ξ2N/ξA. (3.18)

We have verified that the ratio ξ2N/ξAlA = ξA/2ξN is indeed approximately a constant of

order 0.3, within 10 − 20%.

If the length of the segments lA continues to grow slower than their end-to-end distance

ξN , the two lengths will eventually become comparable to one another, with segments be-

coming more or less straight. This could mark the beginning of the true scaling regime,

where all the characteristic lengths of the network have the same order of magnitude and

grow proportionally to τ . In any case, the evolution laws (3.7), (3.13), (3.17) cannot con-

tinue indefinitely and must stop at some τ = τ∗. The situation here may be somewhat

similar to that with “ordinary” (not interconnected) strings, where scaling of the charac-

teristic length ξ(t) is quickly established, but scaling of the small wiggles on long strings

and of closed loops is reached only after a long transient period [41 – 44]. We shall refer to

the evolution at τ < τ∗ as the transient scaling regime.

3.4 Towards a true scaling regime

We attempted to shorten this transient regime, or avoid it altogether, by increasing the

duration of the initial damped period. This has the effect of increasing N and decreasing

the ratio lA/ξN ∼ (ξN/ξA)2 in the initial state (right after damping is turned off). Getting

to the end of the transient regime by the end of the simulation proved to be a difficult
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Physical time Damping (γ) ∆t

0 < t < 32 0.5 0.2

32 < t < 272 2.0 0.5

t > 272 2.0/t (rad.) 0.2

Table 3: Values of the parameters in simulation with a second damping period, introduced to

achieve scaling of the segment lengths lA and lB.

task, for which we had to push the limits of the stability of the code by using a rather

large time step, a rather large damping coefficient, and evolving the system beyond the

half-light-crossing time of the simulation box.

We performed a set of 20 simulations with the values of time step ∆t and the damping

parameter γ shown in table 3. The difference from the rest of our simulations is in the

second period of damping imposed after the first period (which is common to all simulations

and is used to relax the system from the highly excited initial state and allow string

formation). The extra damping period has a time-discretization of ∆t = 0.5 (keeping

∆x = 1), and the numerical stability is achieved because the damping is also rather high

(γ = 2.0).

Figure 10 shows the length measures ξA, ξN , lA averaged over the 20 simulations. All

three lines seem to approach a linear behaviour. The slopes of ξA and ξN agree with the ones

obtained earlier, without an extended damping period. Other quantities characterizing the

system, such as αAB, fAB and the percentage of string length in loops, also agreed with

the ones for the simulations without extra damping. The fairly linear behaviour of lA is

the main change. A linear fit to the evolution of lA gives

lA ≈ αLAτ + l
(0)
A , (3.19)

with αLA ≈ 0.8. Extrapolating this behaviour to large τ , we expect a scaling regime in

which lA is a few times larger than ξ and ξN . However, because of our extreme choice

of parameters and large error bars in lA, and because the change in lA during the linear

regime is relatively small, this conclusion should be regarded as tentative.

3.5 Loops and small nets

We observed the formation of small independent nets a few times in the course of the

simulation, but these occasions were rather rare, so AB-strings belonged predominantly

to the infinite network, with at most one small net in addition. The fraction of the total

string length in disconnected A- or B-loops is shown in figure 11. We see that this fraction

remains nearly constant, at a value fL ∼ 0.03 − 0.05 in radiation and matter eras and

fL ∼ 0.08 in flat spacetime.

The length distribution of independent loops is plotted in figure 12, averaged over 20

simulations in radiation era. The figure uses logarithmic binning and shows the distribution

of loops at four different times. We see that some of the loops are fairly large, with length

much greater than the inter-string separation ξ. Such loops should arguably be regarded
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Figure 10: The length measures ξA, ξN , lA averaged over 20 simulations performed with an

extended damping period, as explained in section 3.3. The thick lines corresponds to the average,

whereas the shaded regions correspond to 1-σ statistical errors over the simulations.

 0

 2

 4

 6

 8

 10

 12

 80  100  120  140  160  180  200  220  240  260

pe
rc

en
ta

ge

time

Flat
Rad
Mat

Figure 11: Percentage of string length for both A and B strings in loops that do not belong to

the main network.

as part of the infinite network. Indeed, if the diameter of a loop is larger than a few

times ξA (or ξB) for a given time, the loop is very likely to reconnect to the network. If

we exclude loops longer than 6ξA (3ξA), the percentage of string length in loops drops to

1 − 2% (0.5%). These values are in agreement with previous field theoretical simulations

where a loops were found to account for a few percent of the total string length [40].

Simulation movies show that loops that decouple from the network do not oscillate as

they would in Nambu-Goto simulations, but rather shrink and disintegrate. This could be

expected, since it is well known that in order to observe oscillating loops in field theory

simulations one would need very large loops and very small values of the lattice spacing.

Additional damping, through particle emission from loops, may be due to the presence of

short-wavelength string excitations in the initial conditions, as indicated by the numerical
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Figure 12: (Left) Distribution of independent loops for the radiation era, averaged over 20

simulations, for four different time steps. The figure shows that there are rather large independent

loops formed during the simulation, and that the peak of the distribution tends to move towards

larger sizes with time. (Right) Loop distribution averaged over 20 simulations in radiation era. The

distribution appears to follow eq. 3.20 rather well, suggesting that it is scaling.

results of refs. [45, 46]. The short lifetimes of the loops in our simulations explain, at least

in part, the relatively small amount of string in loops, as compared to the Nambu-Goto

simulations.

In any case, we checked the loop distribution in our simulations for scaling behavior.

On dimensional grounds, the number density of loops per unit length interval in a scaling

network should have the form
dn

dl
(t) = t−4f(l/t). (3.20)

Defining ∆Ni as the number of loops between sizes li and li+1 and ∆li = li+1 − li, we plot

in figure 12 the (binned) quantity ∆Ni

∆li
t4, obtained for 5 different times and averaged over

20 simulations. In a situation where the loop distribution scales, all the lines should line

on top of one another. We see that the graph in figure 12 does indeed exhibit scaling.

3.6 Effect of higher binding energy

We ran some simulations with a greater value of the string binding parameter, κ = 0.95,

in order to try to understand how sensitive our results were to the precise value of κ.

The main difference encountered in these simulations was the fraction of bound string fAB

increased by a factor ∼ 1.5 (see figure 13). Our analysis showed that the effect on the

correlation lengths ξ and on the loop distribution was very small. Actually, the values

of the coefficient of the different length measures where the same as in the κ = 0.9 case,

the only difference being a smaller αN for this case (0.16, 0.22, 0.25 for flat, radiation and

matter eras, respectively).

4. Conclusions and discussion

We performed numerical simulations of the formation and evolution of string networks
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Figure 13: Fraction of total string length in bound strings, for flat, radiation and matter regimes,

for simulations with κ = 0.95. The percentage is still fairly low, though somewhat higher than for

κ = 0.90 (figure 5)

using the Saffin’s model for interacting strings. The model has two types of Abelian gauge

strings, A and B, with an attractive interaction which gives rise to bound AB-strings.

Starting with a randomized high-energy field distribution, we found that an interconnected

string network is indeed formed, consisting of A and B strings, as well as their (1, 1) bound

states, joined together at Y -type junctions. No higher (p, q)-strings were observed in the

simulations.

Throughout each simulation, the network is dominated by a single (“infinite”) net,

with occasional small nets and a fair number of disconnected closed loops being formed in

the course of the evolution. The characteristic length scale of the network approaches the

scaling regime where it grows proportionally to time, ξ(τ) = ατ with α ∼ 0.15, in both

radiation and matter eras, as well as in flat spacetime. Other characteristic length scales,

such as the length of AB segments, the typical correlation length of A and B strings or

the typical distance between Y junctions also scale.

A surprising feature of our simulation is that bound AB-strings constitute only a

small fraction of the total string length (∼ 2%). Also, the average length of AB-segments

is much shorter than the length of A- or B-string segments. This is in contrast with analytic

models [17, 18] predicting all lengths to be fairly equal. From movies of the simulations one

can see that AB-segments do not always form when an A-string meets a B-string (even

for relatively high bounding energies); on the contrary, the formation of bound segments

is rather infrequent. Even though new AB-segments are constantly formed, their lifetime

is relatively short, usually less than the Hubble time, as the segments are “unzipped” by

the free A and B ends pull them in different directions.

Even though, with our general initial condition configuration, most of the typical

distances in the network showed a scaling behaviour, the average comoving lengths of A

and B segments did not. These lengths remained much larger than the typical correlation

length throughout the simulation. This evolution regime cannot continue indefinitely, since
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the correlation length ξ would eventually catch up with the segment lengths lA and lB . In

an attempt to go beyond this transient regime and reach true scaling, we introduced an

extra period of strong damping at early times (which has the effect of decreasing lA/ξ) and

pushed the parameters to extend the dynamic range of the simulation. We found that the

system does seem to approach a regime where all characteristic lengths scale linearly with

time. If this were the true scaling regime, it would provide us, among other things, with

the means to calculate CMB power spectra predictions from the field theoretical model as

in [31, 47 – 49]. But due to a relatively short duration of the linear evolution and to likely

presence of spurious damping, our simulations cannot be relied upon for a quantitatively

accurate description of scaling.

Disconnected closed loops constitute about 10% of the total string length. Some of

these loops are very large and will very likely reconnect into the main network again. If

one factors out disconnected loops of length larger than a few times the correlation length,

the total string length in loops drops to below 2%, in agreement with [40]. We examined

the length distribution of loops in the network and found that, even though out parameter

choice is not expected to resolve accurately string dynamics, these distributions seem to

scale.

The network properties in our simulations are closer to those of superstring networks

than they were in earlier simulations that used Z3-strings or non-linear sigma-models.

However, there is still an important differences. On the one hand, our A and B strings

have the same tension, as opposed to F− and D− strings. On the other, collision of same-

type strings in our model always result in reconnection (unless the string segments are

moving extremely fast [50]), while in the case of superstrings the reconnection probability

is p < 1 and can even be small [4, 5, 51]. This feature can be accounted for in Nambu-Goto

and analytic models.

The efficiency of various energy loss mechanisms by the string network remains a topic

for future research. Energy loss to loop production appears to be substantial, considering

that the length in loops at any time is a few percent of the total and that the loops do

not stay around for long and rapidly decay. Another important energy loss mechanism

in field theory simulations is direct particle emission from strings [40, 52]. In fact, the

analysis in [18] shows that emission of particles and of tiny loops which immediately decay

into particles is the dominant energy loss mechanism for a single U(1) string network, so it

probably dominates in our simulations as well. It has been argued in [45, 46, 18] that this

effect is spurious and is due partly to insufficient resolution of the simulations and partly

to excessive amount of noise in the initial conditions. This issue is not completely settled,

since some of the recent Nambu-Goto simulations [43] and analytic treatments [53] indicate

continuous production of microscopic loops throughout the network evolution.

In summary, what have we learnt from our simulations? We have demonstrated that an

interconnected network of strings can indeed form at a symmetry breaking phase transition.

This network shows no tendency to freeze to a static configuration. On the contrary, it

appears to approach scaling, with all characteristic lengths growing linearly with time.

Qualitatively, our results indicate that bound strings constitute only a small part of the

total string length and that the A and B string segments are rather wiggly, having lengths
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significantly greater than the correlation length ξ. The latter property leads to relatively

frequent self-intersections and allows the network to lose a substantial fraction of its energy

in the form of closed loops. Our simulations also indicate that the true scaling evolution

may be preceded by a transient regime in which the comoving lengths of A and B-segments

remain nearly constant in time.

Some of the shortcomings of our approach can be overcome in Nambu-Goto-type simu-

lations (e.g., of the kind developed in [54]) or in analytic models (along the lines of [17, 18]).

Either of these approaches, however, requires some microphysical input. For example, one

needs to know under what conditions a bound string is formed in a string collision, what

fraction of the binding energy of the newly formed string is radiated away, etc. The advan-

tage of a direct field theory simulation is that it accurately represents the microphysics. A

combination of all three approaches will probably be needed to reach a full understanding

of network evolution.

Acknowledgments
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